热门搜索:

北京华誉鼎盛山特UPS厂家主营产品包括:UPS电源、UPS不间断电源,UPS蓄电池、直流屏蓄电池、科华UPS电源,松下蓄电池,电子设备蓄电池,山特UPS不间断电源,工业级UPS电源等,专业做UPS不间断电源电源设备。

    双登蓄电池6-GFM-100
    • 双登蓄电池6-GFM-100
    • 双登蓄电池6-GFM-100
    • 双登蓄电池6-GFM-100

    双登蓄电池6-GFM-100

    更新时间:2020-05-23   浏览数:25
    所属行业:电子 电源/电池
    发货地址:北京市海淀区上庄镇  
    产品规格:
    产品数量:9999.00个
    包装说明:
    单 价:面议
    变电站蓄电池作为直流系统的后一道防线,在交流电故障状态下,能够可靠地为站内重要的一二次设备提供电源。保证安全装置正确动作,是保障电网安全运行的重要条件。目前大部分变电站使用的是阀控式铅酸蓄电池,在经过5~8年的使用后,会出现容量下降、内阻增大并终失效的情况。
    变电站使用的操作电源电压等级高,往往是由几十个甚至上百个电池单体串联后组成相应电压等级,也意味着任何一个单体异常,均会导致整个蓄电池组性能急剧下降。特别是当单体开路时,会导致整个蓄电池组失效,终导致严重的变电站事故。
    由于蓄电池本身的设计、生产及使用维护等原因,蓄电池失效报废的情况时有发生,然而由于阀控式铅酸蓄电池内部处于密封环境,无法定期对电池的内部状况进行检视,使得阀控式铅酸蓄电池存在更大的隐性开路风险。国内多起变电站事故,都与直流系统有关,而蓄电池就是直流系统中的薄弱环节。
    2013年3月南方电网某电网公司220kV变电站交流停电,出现蓄电池组无法提供直流电源的故障,造成事故扩大,后对故障电池解剖,发现内部有断裂开路的现象。2015年1月某35kV变电站在一次常规的定期切换试验中,发生蓄电池开路故障,引起全所直流母线失压,全部保护退出运行。
    2015年9月国家电网某220kV变电站因大雨造成交流停电,因蓄电池组容量不足,在处理故障的过程中,使直流母线失压,对故障电池解剖后发现内部负汇流排与负极柱处断裂明显,腐蚀严重。
    变电站直流系统蓄电池长期处于浮充运行的工况,电压巡检仪上报出的电压过高信息可能是由电池过充造成的,难以从电压在线监测上发现开路电池。电池离线检测能够通过开路电压、内阻等初步判断电池是否开路,但是变电站电池离线检测只能周期性地进行,多一个季度检查一次。两次检测之间的间隔时间越长,电池在此期间出现电池开路的风险越大。
    本文分析了变电站蓄电池内部开路的主要原因,并提出了目前针对电池开路检测的主要方法及预防措施,为变电站蓄电池开路的预防提出建议。
    1 蓄电池开路的主要原因及检测方法
    1.1 接条开路及其检测方法
    如果电池在使用过程中出现部分连接点出现腐蚀氧化等现象,就会造成开路。例如,在安装时没有拧紧连接条的螺丝,使得连接条电阻增大,时间久了就会烧坏连接条,造成开路;蓄电池所处的环境造成蓄电池连接条被腐蚀,时间一长便会造成开路;长时间未对蓄电池进行检查维护,连接条老化断开也会使蓄电池开路。连接条开路之前一般会有一个渐变的过程,若变电站维护人员定期对蓄电池组进行目视检测、卫生打扫等作业,则比较容易发现。
    1.2 蓄电池开路原因及检测方法
    正常2V 300AH电池单体内阻一般在0.5m 左右,在放电过程中因电池内阻产生的反向端电压很小,内阻越大,反向端电压越大。正向端压降逐渐增大,当单节电池的内阻增加到一定值时,电池的正向端电压几乎为0。若内阻的进一步增大,则会产生反向电压,从而影响蓄电池组的对外放电,导致电池组无法提供满足负载供电的电压,造成无可挽回的损失。
    阀控式铅酸蓄电池一旦开路失效,电池往往就会出现正极板栅腐蚀、失水、热失控、负极板汇流排腐蚀、硫酸盐化等故障,这些故障均会导致蓄电池的内阻变大。
    (1)蓄电池失水及热失控
    失水是阀控铅酸蓄电池特有的故障,在使用过程中,浮充电压过高,充电电流过大,会使氧复合反应效率降低,内部压力增大,气体排出导致水分损失。此外,蓄电池室温偏高、排气阀开起压力过低和外部气压低等,也会加快蓄电池失水速度。
    当蓄电池内部缺水时,会降低参与电化学反应的离子活度,导致蓄电池内阻加快上升。而蓄电池组在充电电流、温度以及失水等多重作用下会发生累积性的增强作用,终导致热失控,使蓄电池发生不可逆的损伤。
    (2)负极板硫酸盐化
    如果蓄电池组长期处于欠充状态或者在半放电状态下长期储存,就会致使负极板上的活性物质硫酸铅再结晶而形成坚硬而粗大的硫酸铅。如果硫酸铅短时间内不能在电池内部发生化学反应,就会使硫酸铅失去活性,以后将不能再参与化学反应。粗大的硫酸铅结晶附着在活性物质的微孔上,阻止硫酸溶液深入与电流传输,使蓄电池内阻变大,导致蓄电池充放电性能严重恶化。
    (3)正极板栅腐蚀
    在浮充过程中,由于氧气的再化合作用,使得整机板栅的电位比流动电解液电池中的电位高,正极板栅处于较高的酸性环境中,容易使正极板栅受到腐蚀,正极板栅腐蚀是限定电池寿命的重要因素之一。运行过程中蓄电池失水或环境温度过高会进一步提高蓄电池内部的电解液比重,加快蓄电池正极板腐蚀的速度,使极板活性物质相对腐蚀前变少了,终导致蓄电池容量变低。
    (4)负极汇流排断裂
    由于负极发生氧复合反应,负极汇流排处呈碱性环境,使得金属铅不断被腐蚀而形成硫酸铅,当正极板栅受到腐蚀时,正极上的析氧反应加剧,使负极氧复合反应增大,加剧了负极汇流排的腐蚀速度,而电解液的失水增加了氧气的传递通道,加剧氧复合反应,同时也增加蓄电池热失控的风险。
    由上述分析可以发现,蓄电池失效的原因往往都不是独立存在的,而是相辅相成,并终都会导致电池内阻增大,容量下降。通常对于电池内阻逐渐增大的电池,可以通过日常的电压、内阻、核容等检测方式检出。变电站目前蓄电池配置都会有足够的冗余,即使容量下降至80%,也还能够支撑负载用电。
    但是,正极板栅腐蚀导致的板栅断裂隐患以及负极汇流排腐蚀导致汇流排断裂的情况具有一定的突发性,在正常的电压、内阻、0.1C核容放电的条件下,其电性能值基本能保持正常,一旦交流失电、变电站前期需要较大电流供电时,已严重腐蚀的汇流排就会被烧断,引起蓄电池组开路,失去应有的功能。
    在蓄电池放电的瞬间,电池内阻的影响会产生电压跌落,包括充满电解液的隔膜电阻、板栅的欧姆电阻、活性物质电阻,以及固-固、固-液接触面和电解质电阻。当蓄电池的内部性能发生变化时,其内阻的变化可以通过电压跌落的特征曲线来表征,放电电流越大,电压偏差值也越大,其特征曲线也会更加明显。
    双登蓄电池6-GFM-100
    应对双登蓄电池放电过度三妙招
    相信很多车友对于汽车零部件都有着或多或少的了解。就比如双登蓄电池,很多车友都懂得要定期保养,也都懂得,如果双登蓄电池缺电就会造成汽车瘫痪不能启动。本篇文章中,介绍一下如何才能有效的避免双登蓄电池放电过度。
    1、停车等候时避免使用大功率用电器。大功率用电器包括大灯、雾灯、座椅加热、音响以及空调等。
    2、停车离开前检查大灯以及车内车顶灯光是否已经关闭。一般来说,一个正常的满电的双登蓄电池能让大灯工作两小时。随着双登蓄电池额定容量的减少,大灯能正常工作的时间就越短。如果在停车离开后忘记关大灯,车辆的电脑也没有自动灭灯功能,次日早晨不能着车的几率可达99%。
    3、长时间不用车辆应将双登蓄电池负极拔下来。由于停车时,车辆电路系统中也存在微弱的电流消耗,长时间静置车辆将导致双登蓄电池耗尽。所以,对于长期不使用的车辆,我们应该将其双登蓄电池负极拔下来,避免双登蓄电池电量过快耗费。
    双登蓄电池6-GFM-100
    双登集团技术中心主任钟义华对户用储能系统的环保性也进行了解读。他说,铅酸电池目前在技术上可以实现的回收,同时双登集团的锂电池储能系统采用的是现在成熟的磷酸铁锂电池,也非常环保。此外,从产品应用的角度看,随着电池循环性能的不断提升,可以让用户在付出同等投入的情况下,拥有更长的电池使用寿命,一方面实现了节能,另一方面也可以让用户获得更高的收益。
    本网专访双登集团技术中心主任钟义华先生
    让用电像家电一样便捷 双登将更懂你的用电需求
    目前,户用储能系统在德国、英国、澳大利亚等分布式能源发展较好的国家已经实现了一定程度上的商业应用。钟义华认为,随着我国峰谷电价差价越来越大,户用储能系统在家庭用电方面的经济性优势将越来越明显。通过使用光伏储能系统,用户可以在白天存储电量,夜晚输出使用,既降低了对电网负载的压力,也非常经济、环保。
    郝三存表示,尽管目前户用储能在我国还更多处于示范应用阶段,但随着我国分布式能源的发展,户用储能在我国也将会越来越普遍。而如何让普通用户也能很方便地操作系统,成为了双登技术团队的追求。
    在郝三存看来,未来双登户用储能系统的设计理念是要将系统打造成人人都能操作的“家用电器”,让消费者用电像使用家电一样便捷化。同时,系统还要支持先进的能量管理理念,实现让光伏、风力发电与电网无缝接入,能够做到与电网的双向互动。此外,智能化的储能系统还将成为家庭用电的总控系统,将所有家电联网,成为未来智能生活的电力保障部件。
    目前,用户在使用双登户用储能系统时,只需按照标识将组件正负极端子正确插入控制器,打开开关后,就可以为负载提供电力供应,无需其它设置,而液晶屏监控可以显示系统的运行参数,让用户随时了解设备的运行情况。
    随着智能化不断提升,户用储能系统将逐步具备故障自动诊断、保护与恢复功能。钟义华表示,随着“互联网+”概念逐渐融入工业制造领域,双登也在开发与互联网结合的产品。而这样的开发将让户用储能系统的数据采集、分析、综合、整理工作变得越来越简单。对于普通用户来说,这些数据或许没有太多意义,但对于系统设计人员来说,数据可以让他们更好地对系统运行情况进行综合分析,并以此做出改进,设计出更为便捷化的产品。
    钟义华乐观地认为,未来,即使你完全不懂储能电池技术,也完看懂产品的使用情况。同时,智能化的双登也将会更懂你的用电需求。
    双登蓄电池6-GFM-100
    双登蓄电池高电率容量检测法
    双登蓄电池的高倍率容量测试法是极好的性能测试方法,测试得出的值也十分准确。其测试方法就是在使用大电流放电的方法来测试出双登蓄电池剩余的容量。同时也可以测试出双登蓄电池在大电流放电时两端电压呈如果的变化趋势,从而可以判断出双登蓄电池性能的好与坏。但是此方法可以检测出双登蓄电池内部是否出现故障,但是不能对充足电量的双登蓄电池进行测试。在测试时,设定的电流要比以前相对的高出一点,这样测试出来的双登蓄电池剩余电量也会相对的准确。
    网友问:长期亏电的双登电池能修复吗
    双登电池工程师回答:
    要看双登电池铅板的硫化程度。对硫化严重的只能报废,硫化程度较轻时,可以去硫充电,它是一种排故性充电方法。
    双登电池充电不足或放电后长时间放置,在极板上会逐渐形成一层白色的出晶粒的硫酸铅,这种晶粒很难在正常充电时溶解还原,因而导致容量下降,这种现象称为极板硫化。
    去硫充电操作过程是:
    1.倒出原电解液,并用蒸馏水冲洗两次,再加入足够的蒸馏水。
    2.接通充电路进行充电,当电解液密度上升到1.15时倒出电解液,换加蒸馏水,在进行充电,直到相对密度不在增加为止
    3.后进行一次以10h放电率放电,再将双登电池充满,电解液密度调整到标准值即可。
    去硫充电的双登电池,其容量因恢复到额定的80%以上。
    这个比较专业和需要用到一些专用工具,不知明白吗?先试试,如果不行只能将双登电池报废。希望能帮到你,还有要注意安全,注意做好防护措施。
    -/gbadeie/-

    http://www.hyxdcj.com